
The Global File System t

Steven R. Soltis, Thomas M. Ruwart, Matthew T. O'Keefe

Department of Electrical Engineering
and

Laboratory for Computational Science and Engineering

University of Minnesota
4-174 EE/CS Building

Minneapolis, MN 55455
soltis @ee.umn.edu

Tel: 612-625-6306

Fax: 612-625-4583

Abstract

The Global File System (GFS) is a prototype design for a distributed file system in which

cluster nodes physically share storage devices connected via a network-like Fibre
Channel. Networks and network-attached storage devices have advanced to a level of

performance and extensibility so that the previous disadvantages of shared disk
architectures are no longer valid. This shared storage architecture attempts to exploit the

sophistication of storage device technologies whereas a server architecture diminishes a
device's role to that of a simple component. GFS distributes the file system

responsibilities across processing nodes, storage across the devices, and file system
resources across the entire storage pool. GFS caches data on the storage devices instead
of the main memories of the machines. Consistency is established by using a locking

mechanism maintained by the storage devices to facilitate atomic read-modify-write

operations. The locking mechanism is being prototyped on Seagate disk drives and

Ciprico disk arrays. GFS is implemented in the Silicon Graphics IRIX operating system
and is accessed using standard Unix commands and utilities.

Introduction

Distributed systems can be evaluated by three factors: performance, availability, and

extensibility. Performance can be characterized by such measurements as response time

and throughput. Distributed systems can achieve availability by allowing their working

components to act as replacements for failed components. Extensibility is a combination

of portability and scalability. Obvious influences on scalability are such things as

addressing limitations and network ports, but subtle bottlenecks in hardware and software

may also arise.

These three factors are influenced by the architecture of the distributed and parallel

systems. The architectures can be categorized as message-based (shared nothing) and

1 This work was supported by the Office of Naval Research under grant no. N00019-95-1-0611, by the
National Science Foundation under grant ASC-9523480, and by grant no. 5555-23 from the University
Space Research Association which is administered by NASA's Center for Excellence in Space Data and
Information Sciences (CESDIS) at the NASA Goddard Space Flight Center.

319

shared storage (shared disk) Message-based architectures share data by communication

between machines across a network with the data stored locally on devices within each

machine. Machines in the shared storage architecture access all storage devices directly.
Figures 1 and 2 show examples of message-based and shared storage architectures [1][2].

Client Client Client Node Node Node

ork or I/0 Bus

Server Server Storage Controller Storage Controller

Figure 1: Message-Based Figure 2: Shared Storage

Advocates of both architectures claim the advantage with respect to these three factors.

This is a techno-religious war that will not be resolved any time soon, yet analyzing
existing systems gives perspective on the strengths and weaknesses of each architecture.

This next section summarizes a number of distributed file systems based on their data
sharing approaches.

Message-based Distributed File Systems

Sun Network File System

The Sun Network File System (NFS) was designed by Sun Microsystems in 1985 [3].

It's design goals were system independence, name transparency, and preservation of Unix

file system semantics. NFS uses a client-server approach. The server is stateless and
writes modified data to stable storage before returning results. The server is able to cache

data in its system memory to improve performance. The clients make requests to the

server with all information necessary to complete the operation. Clients and servers

communicate over a network using remote procedure calls (RPC). The RPC is a high

level protocol built upon User Datagram Protocol (UDP) and Internet Protocol (IP).

The statelessness of the server eases crash recovery. A client that goes down does not

effect the operations of the server or other clients. A server that fails need only to reboot.

The clients will resend requests when the server has not completed their requests in a
given time. The clients perceive the server as being slow but they are unaware that it has
rebooted.

320

Sprite File System

Sprite is a distributed operating system for networked workstations developed under the

Symbolic Processing Using RISCs (SPUR) research project [4]. Like Sun NFS, Sprite

uses remote procedure calls to communicate across its network. Sprite's file system is
distributed across multiple servers and clients. It's primary goal was to provide name

transparency while still providing adequate performance. Even device special files are

accessible to any process on the network.

The Sprite file system maintains cache consistency using a server-initiated approach.
The server tracks open files. When files are non-write-shared, the clients may cache the

portions of a file within their local memories. When a file moves from non-write-shared
to write-shared, the server performs a call-back operation and disables client caching.

Andrew and Coda File Systems

Carnegie Mellon University's Coda is a distributed file system descended from the
Andrew file system which was a joint research project between IBM and CMU [5][6].

Both file systems are designed to operate on a distributed network of workstations scaling

up to 5000 machines.

Coda (constant data availability) was designed to improve on the availability of Andrew.
Each client is able to cache entire files locally in its memory and disks. Furthermore,

multiple copies of each file may exist on several servers. A server failure may then have

little impact on availability. This approach also allows clients to run in disconnected
operation using only the files it has cached locally. The client can reconnect to the

network and synchronize its cache with the rest of the system.

Like the Sprite file system, Coda servers maintain state concerning file accesses. The

servers are responsible for performing call-backs when a clients cached data has been

modified by another client. File sharing on a client is guaranteed to have consistency

described by Unix file sharing semantics. Files shared across different systems see
consistency at the granularity of the entire file.

xFS Serverless Network File System

The xFS file system is part of the Berkeley's Network of Workstations (NOW) project

[7]. It is a successor to some of the research from the Sprite project. It uses a log

structured approach like Sprite's Log-structured File System (LFS) and Zebra's [8]

striping technique to simplify failure recovery and provide high throughput transfers.

321

In xFS workstations are connectedby a fast, switched network, xFS is said to be
serverless,sincethestorageserverfunctionality canbeplacedon thesamemachinesasa
client. Hence, any system can managecontrol, metadata,and real data. This has
advantagesof loadbalancing,scalability,andhigh availability.

Like Sprite,thesystemsupportsdatacachingon theclients[9]. The client requestsdata
from a manager.This managertries to satisfy the requestfrom anotherclient's cache;
otherwiseit directs the client the appropriatestoragedevice, xFSusesa tokenbased
cacheconsistencymechanism.A client mustacquireatoken for eachfile systemblock
thatit wishesto modify. The managersnotify theclientsto invalidatetheir stalecopies
of thedataandforwardtheir requeststo thenewownerof thetoken.

Shared Storage Distributed File Systems

Digitars VAXClusters VMS

The VAXcluster is a "closely coupled" structure of VAX computing and storage nodes

that operates as a single system. This system had VAX nodes connected by a message-
based interconnect. Each processor runs the same copy of the distributed VAX/VMS

operating system. The interconnection network had two topologies: the high
performance Star Coupler hub that supported a maximum of 16 devices and a low cost
Ethernet network [10].

The storage devices are connected to the system through a Hierarchical Storage
Controller (HSC). For high-reliability, another HSC could be placed between the dual

ported storage devices and the star coupler by adding a redundant path between the CPUs
and the storage devices.

The operating system allows files to be shared using the cluster's distributed lock
manager. Lock requests are made for a particular access mode: exclusive access,

protected read, concurrent read, or concurrent write. Incompatible requests for resources
are queued until the resource is unlocked. This system is a shared storage architecture,

since all file requests are serviced from the shared HSCs. Each HSC can support up to 32
disks.

VMS allows caching for data and file system resources. Coherence is maintained

between the CPU's local memories by sequence numbers within the files' synchronization

locks. When the file system modifies a block, it increments the sequence number in the

file's lock. If another system has this block cached and later references it, this system will
find that it's sequence number is old. The block will be refreshed from the HSC.

322

Cray's Serverless File System

Cray Research's Serverless File System (SFS) is a file system incorporated in their

UNICOS operating system [11]. The file system uses a HIPPI disk array as the shared

storage device. The disk array is connected to four C90 machines through a HIPPI
switch. All C90 machines (nodes) act as peers; there is no server machine.

Arbitration of the HIPPI disk array is performed on a Sun SPARC workstation which is
also connected to the HIPPI switch. This workstation, call the HippiSeMaPhore (HSMP)

is responsible for maintaining semaphores used for mutual exclusion of data stored on the

disk array. It also has error recovery functions.

Cray's SFS supports two types of file operations: multiple readers and single writer. SFS

provides consistency by using the semaphores to facilitate read-modify-write operations
as well as limiting the open file states. Nodes are able to cache data like a local file

system but with the constraints of more limited parallel file operations.

Message--based Versus Shared Storage

The message-based architecture's strength lies in its extensibility. The approach is as
portable as the network protocol connecting the machines and it can potentially scale to

large numbers of machines. The best example of message-based portability is NFS. This

file system dominates the industry, because it is available on almost every platform. File

systems like Coda have shown that the message-based approach scales to thousands of
machines.

Message-based systems may perform well if data access is well balanced across all
machines. Load balancing is difficult since machine capacities and usage differ

dynamically across the system. Locality is also difficult to maintain, since there will

always be resources that are shared by many nodes in the system. Redundant copies can
be maintained but at the cost of coherence overheads. Furthermore, the performance

benefit of high speed devices like disk arrays is negated, since the bandwidth to each

machine is limited by the network. To summarize, achieving good performance on

message-based systems is not an easy task.

Server and device failures are another challenging problem facing the message-based

approach, since a server failure may result in data becoming inaccessible. Fault tolerance

may be maintained using disk array devices at each node, but redundancy is not extended
across machines. Software redundancy schemes must be built into the file system to

maintain any fault tolerance.

The shared storage approach has the advantage that every machine has nearly uniform

access to all storage devices and freedom from servicing data requests from other

323

machines. This approachis similar to the traditional uniprocessormodel where a
machineacts independently. Also, failures of a machinehave little effect on other
systemsexceptfor possibleloadincreases.Storagedeviceavailability canbe improved
usinghardwareRAID [12].

The sharedstoragearchitecturetakes advantageof the propertiesof the underlying
storagehardware. Sinceeverynodehasuniform accessto thedevices,the bandwidth
producedby disk arraysor disk striping can be utilized by all nodes. Also, devices
capableof commandqueuingcanoptimizeheadseeksto providehighthroughput.

Thedownfall of traditionalsharedstoragesystemhasbeenscalabilityandcost. Systems
like the Digital's VAXcluster and Cray's SFSarebasedon proprietarynetworksand
hardware. Proprietaryhardwaredoesnot benefit from market competitionand often
remainscostly. Furthermore,thesesystemsdo not scalewith the numberof nodes. In
both examples,only one storagedevice and a few machinescan be attachedto the
system.

Sofar neitherarchitecturefully satisfiesall threefactors- performance,availability, and
extensibility but new network technologiesare changing this. For instance, Fibre

Channel (FC) is an emerging ANSI and International Standards Organization (ISO)

standard for a network architecture [13] that supports network attached storage by

including the SCSI-3 channel protocol. Fibre Channel provides two topologies for
network attached storage: switched and arbitrated loop [14].

A high speed network like Fibre Channel can improve the performance of both shared

storage and message-based architectures, yet it does little to improve the extensibility and
availability of the message-based approach. Providing network attachment to storage
devices greatly enhances the extensibility of shared storage. With a network like Fibre

Channel, a system that is non-propriety and portable can be built using the shared storage
architecture.

Existing shared storage systems must be redesigned to exploit the properties of these
networks and devices. The assumptions that traditional shared storage file systems made

with respect to data caching, coherence, and resource management are obsolete. For

instance, Cray's SFS caches data locally on its nodes to exploit the high bandwidth, low

latency memories of the C90s. This caching comes at the price of allowing only non-
write-shared file operations. That is, if the file is opened by one or more readers, a writer
cannot access it until all readers close the file. This coherence mechanism can lead to

large latencies and even starvation.

324

The Global File System

The Global File System is a prototype design for a distributed file system. Network

attached storage devices are physically shared by the cluster nodes. The GFS prototype

is implemented in the Silicon Graphics' IRIX operating system [15][16] under the VFS

interface and is accessed using standard Unix commands and utilities [17][18][19]. The

machines and storage devices are connected via a Fibre Channel network.

GFS views storage as a Network Storage Pool (NSP) -- a collection of network attached

storage devices logically grouped to provide node machines with a unified storage space.

These storage pools are not owned or controlled by any one machine but rather act as

shared storage to all machines and devices on the network. NSPs are divided into

subpools where each subpool takes on the attributes of the underlying hardware.

GFS targets environments that require large storage capacities and bandwidth such as
multimedia, scientific computing, and visualization [20][21]. These large capacities

influence tradeoffs, such as caching and the metadata structure, associated with the

design of a file system.

Chip integration has transformed storage devices into sophisticated units capable of
replacing many of the functions performed by a server machine in a client-server

environment. These devices can schedule accesses to media by queuing multiple

requests. They possess caches of one or more Megabytes that can be used for read and

write caching and prefetching.

GFS caches data in the nodes' main memories only during I/O request processing. After

each request is satisfied, the data is either released or written back to the storage devices.

To exploit locality of reference, GFS caches data on the storage devices. GFS informs
the devices on each request what data is appropriate to cache - such as metadata that is

accessed repetitively and small files like directories which are frequently accessed.

Consistency is established by using a locking mechanism maintained by the storage

devices to facilitate atomic read-modify-write operations. This form of locking has the

simplicity of a centralized mechanism yet is distributed across a large number of devices.

Figure 3 represents an example of the GFS distributed environment. The nodes are

attached to the network at the top of the figure and the storage pool at the bottom.

Connecting the nodes and the devices is a Fibre Channel network which may consist of

switches, loops, and hubs. In the example, three different subpools exist:/'single is a

single disk,/wide is a striping of several disks, and the/fast is a disk array.

325

GFS Node

GFS Node

CPU Memory Disk GFS Node /
NFS Server

Backup , _Channel Ne_

IO---O__;.Switches, Hubs, and _

/single /wide / fast

Network Storage Pool

Figure 3: GFS Distributed Environment

To the figure's left is a tape device which is directly connected to the network. Such a

tape drive may be used for data backup or hierarchical storage management. A node

could initiate third party transfers between the disk devices and the tape drive. The figure

also shows how a GFS host can act as a NFS server. This ability allows machines

without GFS capabilities to access GFS data via an NFS exported file system. The

operating systems VFS interface handles the translation between GFS and NFS.

File System Structure

Each GFS file system is divided into several Resource Groups (RG). Resource groups
are designed to distribute file system resources across the entire storage subpool. Figure

4 shows the logical structure of a file system. Multiple RGs exist per device and can be

striped across several devices.

Resource groups are essentially mini-file systems. Each group has a RG block, data

bitmaps, dinode bitmaps (used as the dinode free list), dinodes, and data blocks. The RG

block contains information similar to what traditional superblocks maintain: the number

of free dinodes, the number of free data blocks, and the access times of the RG. File data

and metadata may span multiple groups.

326

GFS also has a superblock which contains information that cannot be distributed across

the resource groups. This information includes the number of nodes mounted on the file

system, bitmaps to calculate unique identifiers for each node, and the file system block
size. The superblock also contains a static index of the RGs. This RG index describes

the location of each group as well as the group attributes and layout.

A GFS dinode takes an entire file system block. Each dinode is divided inlo a header

section which contains standard dinode fields and a section of pointers. The number of

pointers in a dinode is the determined by equation 1 and the number of pointers an

indirect block has is given in equation 2.

pointers in dinode

file system block size - size of dinode header

= .. (1)
size of block address

pointers in indirect block =
file system block size
..........................

size of block address
(2)

Dev_ LockI Super Blockwith
Resource Index

' [I', ',1..............................I! 2 / ',....
II Res°urcoBIock'O u ilResourceBIock" I I::0 I RosourcoBlock-n

'1 ' 1 I 'i: . . i: . i
i DIn_e Bltmaps =j i Din_e Bltmaps ::: i Di_e BRm_s

'1 ' '1 I.....i _ I ::! i

i Data Block Bitmaps i Data Block Bitmaps : un i Data Block Bitmaps

1 ' 1 ' J
I ,i k[..... i } : [ill

Device Loc :. l i

n+2 "'_ Dinode - 0 0 i Dinode - w+l i D node - x+l

0 ,;;,i : ° ;-;i;;;i;;;i :! •
IDevicekock_I I ,

a !1°'=°"I'i
11 Data Block- 0 I'
,I I1

|

Oi :JI I
l I Data Block- q .
i
i]1 r

I

Resource Group - 0

, I _DeviceLock]
l Dinode - x !: J /

i I_ c n
Data Block- q+l I::;

i i

i l: !
: o:: !

• I
i : ::

, I
i Data Block - r I,{

, |::7,''

Resource Group - 1

I

Resource Group - n

Figure 4: GFS Structure

327

The pointersform a tree structurein which all datablocks areat thetree'sleaves and

have the same height. This structure is used so that all its accesses require the same
number of indirect accesses to the data blocks regardless of the offset into the file. This

structure differs from the traditional Unix file system (UFS) where data blocks might

have different heights. The UFS tree is simpler to implement yet can require an

additional level of indirection. Furthermore, UFS places multiple dinodes per file system

block. By taking an entire block, the GFS can have hundreds of direct pointers in the
dinode instead of just ten as in a UFS dinode. Figure 5 illustrates a GFS dinode and one

level of indirection for referencing the data blocks.

GFS Dinode Indirect Blocks Data Blocks

• Dinode Number

• Resource Group
Number

• File Type
• Mode

• Owner/Group

• Number of Links

• Access Times

• Bookkeeping Info

Figure 5: GFS Dinode

Device Locks

Device Locks are mechanisms for node machines to maintain mutual exclusion of file

system data. They are implemented on the storage devices and accessed with a single

SCSI command. The Dlock command instructs the devices to perform primitive

operations on the locks - test and set and clear. The implementation of the device locks

on the device are limited by the following constraints:

1. The device lock commands are independent of all other SCSI commands.

2. Devices supporting device Locks have no awareness of the nature of data or resource
that is locked for mutual exclusion.

328

3. Each lock requires minimal amounts of device memory - as little as one byte per lock.

Lock States

The state of each lock is described by one bit. If the bit is set to 1, the lock has been

acquired and is owned by a machine node. If the bit is 0, the lock is available to be

acquired by any node. The Dlock command action test and set first determines if the
lock value is 1. If value is 1, the command returns with a status indicating that the lock

has already be acquired. If the value is 0, Dlock sets the lock to 1 and returns a good

status to the initiator. The Dlock command clear simply sets the lock bit to 0.

Clocks

Associated with each lock is a clock. The clocks are logical clocks in the sense that they

do not relate to time but instead keep an ordering of events for each lock. These clocks

are incremented when a successful action is performed. The clocks are used to monitor

how often a lock is accessed; i.e., how many times the lock has been set and then cleared.
Such a clock gives insight into load balancing hot-spots. These occur when some locks

are accessed more often than others. More importantly, these clocks are useful for error

recovery.

The clocks are implemented using a minimal amount of memory -- typically 7 to 16 bits

each. The initiators must be aware that the clock values periodically roll-over from their
maximum value to zero. This may happen several times a second on a highly accessed

lock, so care should be taken by the initiator not to assume that the clock value is slowly

growing. The clock value is returned after each Dlock command.

Device Failures

The device locks and their accompanying clocks are stored in volatile memory on the

device, although the locks are held across SCSI resets. When a device is powered on or a
failure occurs which results in the locks being cleared, the device notifies all nodes by

setting Unit Attention. Upon finding a unit attention, a node checks to see if its locks are
still valid. Before proceeding, it will then re-acquire any locks that may have been lost.

Node Failures

A node that fails could leave device locks in the locked state indefinitely. These locks

will remain in this state until some node clears them. A node attempting to acquire a lock

that is owned by a failed node can identify that the lock has been untouched by checking

the activity of the lock's clock. If the clock has remained unchanged for an extended time

period, a node can identify such a case and clear the lock.

329

Caremustbetakenby thenodeclearingalock that it doesnotown. The true owner may

have failed or it may be in a hung state from which it will eventually return still believing
it owns the lock. Furthermore, two separate nodes may simultaneously identify the same

lock which must be cleared and send resets. It may be possible that the first node clears

the lock and sets the lock in the following command. The second node which has already

decided to clear the lock sends the command after the lock has been acquired by the first

node. This second clear request must be ignored.

When a node wishes to clear a lock as failure recovery, the device compares the current

clock with the input clock from the node. This test ensures that the lock will only be

cleared if the node can identify the current value of the clock.

Deadlocks and Starvation

Deadlocks are avoided by the file system. The file system only acquires locks in an
increasing order. Circular dependencies are avoided. Starvation is handled by the file
system and device drivers. The file system does not hold locks for more than a few I/O

requests to storage. A node's device drivers test for its own starvation by checking the

activity of the lock-based clock values. The node can increase the rate at which lock

requests are performed an in attempt to feed its starvation.

Consistency and Caching

Consistency is maintained by using atomic operations guaranteed by the device locks

when modifying data. Given the limited number of practical device locks per device - on

the order of 1024 - individual locks cannot be assigned to each file. One lock is assigned
to the super block, one lock is assigned to each resource group, and the remaining locks

are divided among the dinodes. Figure 4 shows how device locks are associated with the
superblock, resource groups, and dinodes.

When device locks are not implemented on the storage device, the SCSI commands

Reserve and Release can be used to perform atomic operations on data. These commands

provide exclusive access to the entire device for one node by not servicing requests from
other nodes. These commands guarantee exclusive access but do not provide much

parallelism. With only one reservation per device, many non-conflicting requests have to

wait until the storage device is released. In a distributed environment, such limited

access decreases system throughput and response times.

The SCSI protocol describes the optional commands Reserve and Release on Extents.

These commands allow initiators to reserve for exclusive access only the data blocks that

they may need. These commands decrease the granularity of exclusion from the device

level to the block level. While potentially increasing the throughput of the distributed

system, Reserve and Release on Extent commands require the devices to maintain

330

complicatedstatesof accesspermissions.For this reason,thesecommandsaregenerally
not implementedby themajority of devicemanufacturers.

We presentdevicelocksasa mutualexclusionmechanismthat is highly parallel,haslow
deviceoverheads,andrecoversfrom failuresgracefully. TheDlock commandis being
prototypedonSeagatediskdrivesandCipricodiskarrays.

Preliminary Results

Preliminary measurements have been taken with parallel SCSI hardware instead of Fibre

Channel. Fibre Channel hardware is not yet available to us, so we present the parallel

SCSI results instead. We hope to have Fibre Channel measurements by the time this

paper is presented. These results are based upon tests using SCSI Reserve and Release to
maintain consistency instead of device locks. The Dlock command is still in

development and testing by Ciprico and Seagate.

Test Configuration

These tests were conducted on three SGI Indys running IRIX 5.3 operating system. One

Indy has a 100 MHz R4600 processor while the other two have 132 MHz R4600
processors. All machines have 32 Mbytes of main memory.

A Seagate Barracuda 2LP was used as the shared storage device. The 2LP is a 2

Gigabyte Fast SCSI-2 drive. It has a 17 millisecond maximum seek time and a 7200

RPM spindle speed. Our tests measured the time for reserve and release commands to be
approximately 2 milliseconds. This disk and all three system disks share the common

bus. The disk caching parameters are set at their default values.

The configuration shown in figure 6 is a representation of the test environment. To

overcome cabling difficulties, the system disk of node 2 was attached to the internal SCSI
bus of node 0 and node 2's controller was directly connected to the internal bus of node 1.

All devices and controllers are electrically connected.

331

Node 0 System Disks
for Nodes 0 and 2

SCSI ID 4 and 7

I
Fast SCSI-2 Bus

Node 1 System Disk
for Node 2

SCSI ID 3

0
!1

I
/

_ _ Shared Disk

SCSIJ ID 5

Figure 6: GFS Test Environment

Node 2

Benchmarks

Small benchmark programs were run on one, two, and all three machines to study how

effectively the SCSI bus and disk are shared. The tests were run on the file system
running in user space as opposed to running under the VFS interface of the kernel. The

user level file system allows for easy tracing and performance measurements. The user

level file system adds various overheads to the system, so we believe that the VFS file
system will perform even better.

The benchmarks chosen involve tests of creating, writing, and reading files. The file

sizes range from 1 Mbyte to 16 Mbytes. Files were written and read by making from 1 to

128 requests per file. A delay was placed between each request ranging from zero to one

second. This delay represents the time for which a real application would perform
computation or wait for some reason other than I/O. All tests were run five times so that

the median values could be used to evaluate the performance. Table 1 summarizes these

benchmarks. The benchmarks chosen for these tests attempt to match the performance
capabilities of the single shared disk and 10 MB/sec SCSI bus. These benchmarks will

be scaled appropriately when performing the tests on Fibre Channel hardware with
multiple devices.

332

Parameter Range

Number of Nodes

Types
File Sizes

Number of Requests per File

Delay Between Requests

1,2,3
Create and Write, Write, Read

1 MB to 16 MB

1 to 128

0 ms, 100 ms, 500 ms, 1000 ms

Table 1: Benchmark Parameters

Parallel SCSI Performance

Figures 7 and 8 show the speedups for each machine creating and reading a 1 MB file in
128 KB requests, respectively. Figures 9 and 10 show the speedups where machines

create and read a 16 MB file in 1 MB requests, respectively. These results are scaled to

reflect equal amounts of work of 3 MB and 48 MB respectively. That is, the time for one

machine is multiplied by 3 and the time is multiplied by 1.5 for two machines. All these

times are then normalized to the one machine test by dividing by the one machine time.

Curves are given for no delay and 100 ms, 500 ms, and 1000 ms delays. The write tests
show trends similar to the read tests.

Figures 1 l, 12, 13, and 14 are plots of the 16 MB creates with varying request sizes.

Figures 15, 16, 17, and 18 are plots of the same test with read requests. The request axis

is the number of requests needed to access the entire file. The three curves for each plot
are the time for one machine alone, the time of the slowest machine with three machines

running simultaneously, and three times the one machine time. This last curve is given as

a constant workload comparison to the three machine case.

Figures 19 and 20 are plots of the number of conflicts encountered by machines when
running the 16 MB create and read tests and no delay between requests. Figures 21 and
22 show the same tests with a 1000 ms delay. These conflicts were counted by the device

driver whenever a reserve command failed because the device was already reserved.

333

2.5 I

I-*-o,_.ooo<, ::

l / "-'A'-D°=y 1°°T_'_,,
1.5 =

0t,_

0,5 _--

i

O I

2 3

Machines

Figure 7: GFS Speedup for I MB files
Created by 128 KB Requests

1 2

Machines

Figure 8" GFS Speedup for 1 MB files

Read by 128 KB Requests

3-

|--.-o.,=yooo_t i
2.5 --I--Delay 010 ,1...........................

1--db--Delay 05_

2 , I.--,_$.-Oelay 100_ i

1. -

..............................!...........................'T
2 3

Machiness

Figure 9: GFS Speedup for 16 MB files
Created by 1 MB Requests

[.-.-41,--O.layooo_ : /
2.5........ I-I-Do==y o,oq........ i _

I--dl,--D clay o50c I :

t2 _

1

i

0.5

,,

o ;
2

Machines

Figure 10: GFS Speedup for 16 MB files
Read by 1 MB Requests

334

60

5O

4O

_ 30
E

2O

10

0

l-.-3+oh,o.,l : :
....r-=-,_o+o IT_-7/'-

I--_ , _.ch,o+, 3l : __..

i i i

i i

........... 1 t t

16 32 64 128

Requests

Figure 11: GFS Creates of 16 MB files

with no delay

10(3/ . , ;
90_""I'4k-3 Machine_"'i:,_

_ot 1-.-, ,,,,+',+r,,q---'=........... '+....572""
7ot--1--+-_ Machine| 1"i i'_
6of........... ,,........... :.......... _

t 5of........... !........... _....7_
40f

ol I I I

8 16 32 64 28

Requests

Figure 12: GFS Creates of 16 MB files

with 100 ms delay

250 "
i I !

, , /I-*-3M_= I l
2001-1-1 M_hine ["J,_,......7"---

/-,-, + i i/

,_150'100 i1_+........... •1........... t

............. L J •

50'

0

16 32 64 128

Requests

Figure 13: GFS Creates of 16 MB files
with 500 ms delay

450

400 '

350 '

300 '

*" 250 '

,i 200'

I,,-
150'

I00'

50

"'1-"-' _,+_= I": i..... ._7,.
.---['-I!-'1 Machine t"': : /

l---A- 1 Machine * :] '= = /

'............ _........... i
............ ; 1......... I

- !

16 32 64 128

Requests

Figure 14: GFS Creates of 16 MB files
with 1000 ms delay

The conflict plots show several obvious but interesting trends: the single machine tests
had no conflicts; the three machines tests had more conflicts than two machines test; a

delay between requests decreased the conflicts; and creates had more conflicts than reads.

These trends can be explained by the argument that increasing numbers or the rate of

requests increases the chances of having conflicts. The tests that had the most conflicts

are those which issued the most requests in a given time period.

The results are promising considering the nature of the tests. The no delay case

represents nearly constant access to the device in the single machine case. No parallelism

can be exploited by adding one or two machines, since the device is already fully utilized.

The slowdown seen in some plots is a result of the contention for the shared device.

335

40 . •
, ; i

35 --I--_,--3 Machines I ;............ _'-

---I-'-' _'°"°" I- ; _
3o /--_-, _.,_h_..3 t "-_

............ -[.................. _...........
_ 20
"" is 4 ',............ ;-...........

loi
, ,

5 J -
I, 1 1

t io

16 32 64 128

Requests

Figure 15: GFS Reads from 16 MB files

with no delay

_o ---I--¢-3,.'-_h,... I....:............;"......._,,'C.
il--m-,,,_oh_,.I , , /

o "'-[.-A-,,.'3 l....:............'_"7".......
, , i

""_="2o3°"° I ,'r ,_..........

;

o ; ; "I

16 32 64 128

Requests

Figure 16: GFS Reads from 16 MB files

with 100 ms delay

250

+3Mach_" I i i //

200 I-m--, u.¢.., l'" "_'........... _'....... 2/'"

so , ,;........... ;

_. _oo_..........._,....

......----- ,_, ,

o i ; ;
16 32 64 128

Requests

Figure 17: GFS Reads from 16 MB files

with 500 ms delay

450

i i iI , , ,

,oo ----_ ,,.c,+,. I"'! !....... "'_
so I-'-' _'" I---" ',Z..

__+l ! ! /
300 r • •

15.0

100

5O

0 ! I

16 32 64 128

Requests

Figure 18: GFS Reads from 16 MB files

with 1000 ms delay

File creates are slower than the reads because the creates require additional I/O requests
to allocate the dinodes, allocate data blocks, and build the metadata tree. As can be seen

in the plots with the number of requests as the X-axis, the number of requests is indirectly
proportional to the performance. This is because each request has an overhead of greater

that 2.5 milliseconds. Also, with each request there is a possibility of a reservation
conflict which slows the request by as many as 100 milliseconds. With Fibre Channel

and device locks, both these overheads will be substantially reduced.

The 100 ms delay tests allow some parallelism to be realized. However, it is not until the

500 ms delay that the parallelism is exploited for all three machines. The 1000 ms delay

may represent the best speedup for this configuration, since according to figure 14 and
18, the 1000 ms delay test does not distinguish between one, two, or three machines
running simultaneously.

Striping the file system across multiple devices may have an effect similar to increasing
the delay between file system requests. Assuming the 10 MB/sec SCSI bus is not a

336

systembottleneck,addinganotherdeviceto theconfigurationmayremoveasmuchas50
percentof theburdenfrom thesingledisk.

80, :.........
t I , , --/7o1-*-'

_oi....-i--_2M,,_---,-:-...........,....y

sol i i-/
40 , i

U 30 ,

2O

10 _"_t...........

0 _ • • '

16 32 64 128

Requests

Figure 19: GFS Creates of 16 MB files
with no delay

80

70I-+-iM_hj.oI ;-........................

o t--**-2M,[.... -t............ :-...........

so l'-J--3Mach_l : :......

. , _........... J k.

==40 ! i i

_o "

10 _
|

o T _ _.
8 16 32 64 128

Requests

Figure 20: GFS Reads from 16 MB files

with no delay

90

70 I

eo -- --(-B-2 _h_. "---:- ;
l--J--3 Mach,_.,

50 -- --" ," 1

; ; ,
40 '............ '............ J

=_ l i i
GI

lo

o

16 32 64 128

Requests

Figure 21: GFS Creates of 16 MB files
with 1000 ms delay

80 : ; ;

70......i_ _[..l_2-+-1Machir_s .. 'Machir_" """r 1,............
60" "-4r-3 Machirtes ? !

50" , , ,
, i i l

_40 ..
(: = , ,i i I

,'_ :_O............. ,........... -r ,............

___'_.............1 ,............ 1

"_,v" , , ,
l 'J" J- Jm ,

8 16 32 64 128

Requests

Figure 22: GFS Reads from 16 MB files
with 1000 ms delay

NFS Comparison

The benchmarks were also run on a configuration using NFS as a comparison between

distributed file systems running on the same hardware. This configuration consists of a
dedicated server machine and three clients. The workstations and disk are the same as

above; the server machine is a 132 Mhz Indy. Connecting the machines is a 10 Mbit/sec

ethernet network. The server's file system was SGI's XFS [22].

Figures 23, 24, 25, and 26 are the NFS equivalent of the speedup curves given above.

Figures 27, 28, 29, and 30 are given as a time comparison between the NFS and GFS read
tests. A few differences can be noticed between the GFS and NFS tests. First, while both

file system have good speedup for larger delays, NFS never has slowdown. However, the
NFS tests use a dedicated server which is one more machine than the GFS test

configuration. The speedup values do not take this into account. Second, the GFS times

337

are much smaller - between two and ten times faster. In cases where the request sizes
were large, GFS exceeded transfer speeds of 2 MB/sec.

3
14-Do_yoooq :

.?....... [-a-o._, o,oq........ i..............................
/ [--,_o.lay osoq :
/ I_Dolay 100(I :2 i-........ _

1.5

I

0.5 •

0 I

2

Machines

Figure 23: NFS Speedup for 1 MB files
Created by 128 KB requests

2.5

2

t

1

0.5

0

........I+==I........:....................
--41,-- Delay 050

........ "_1 -n-e-ia-Y-_1-0-0-1 i

 :iiiiii I
2 3

Machines

Figure 24- NFS Speedup for 1 MB files

Read by 128 KB requests

2.5-

2-

1.5 -

1

o.5,

o

--4k- Delay 000

....... --J--Delay 0101 ,,-- "_:1

I-a--D.lay osot : /"

1

I

2

Machines

Figure 25: NFS Speedup for 16 MB files

Created by I MB requests

-.4-- Delay 000 1 J

2.5 --B--Delay 010(J i

4...... I--'-D'la' '004....... !..... --__-- -_----

0,5

01 i
1 2

Machines

Figure 26: NFS Speedup for 16 MB files

Read by 1 MB requests

338

300

25O

2O0

3
150

lOO

50

0

Figure 27: NFS Creates of 16
with no delay

I--i...........i..........._I _ch_e

A .,(L_ ''''_

........... i d,,-- -. ,_

, ; ',

16 32 64 128

Requests

MB files

6OO

5OO

4O0

3

300

2OO

100

1

-m--l_, I ' ' / I
L-_1_2:: Lt_]........... ::/ J

................. ! ! i"_........... ; "...........

i

16 32 64 128

Requests

Figure 28: NFS Creates of 16 MB files
with 1000 ms delay

120

lOO

8o

• 60

.!
1--

40

20

0

JILA./r .

............ ; ; ;

,b. _- -,_- _ ---,.--:
, ; ;

8 16 32 64 128

Requests

Figure 29: NFS Reads from 16 MB files
with no delay

500

450

400

350

300

2502O0

150

100

5O

0

,! ,---i...........! -/1......
...........:i ::::::::::::::::::::::::

I

... I

_3 Mac h_es

.... --_m--1Machme

.... l--_1 Mach_e " 3

16 32 64 128

Requests

Figure 30: NFS Reads from 16 MB files
with 1000 ms delay

Future Work

The GFS project is still in its early phase. When Fibre Channel hardware and device
drivers become available, an expanded set of performance tests will be performed. These

tests will be performed on file systems with different configurations - file system block

sizes, resource group layouts, etc.

The device lock mechanisms are to be studied to accommodate failure recovery. The

polling rates between locking retry requests must be tuned to provide a good compromise
between low latencies to each node and high system throughput. Associated with these

rates is the delay between retry algorithm - constant delay versus variable delay.

The time that a node waits before resetting a device lock owned by another node must

also be investigated. This time duration has to accommodate failures in a short period

339

without resettingprematurely. Prematureresetscausethe previousowner to rebid for
locks it onceowned. This isacceptableoccasionallybut shouldbekept to aminimum.

Currently GFS storesdata in a linear layout acrossthe storagedevices. This layout
allows various forms of striping and datapartitioning, but we plan to generalizethis
layout to a subpool architecture. Each subpool will have attributes reflected by its
underlyinghardwareandconfiguration. A translationlayer will beplacedbetweenthe
file system and device drivers. This translation layer will convert the linear block
addressesfrom thefile systemto theproperdevicesandblocknumberspaddingrequests
whenappropriate.

Work hasbegun to study the cachingalgorithmsand cacheconfigurationsof storage
devices. Usinghardwareandsimulations,we areattemptingto determinethe benefitof
largecaches.Replacementpoliciesarealsobeingstudied.

Conclusion

The GFS approachto a distributed file systemusing sharedstoragedevices seems
promising given the high bandwidth natures of new networks and the increasing
sophistication of devices. The architectureplaces more responsibilitieson storage
devicesthan message-basedarchitectures. Modem devicesareableto cache,perform
mutualexclusion,andschedulerequestsfreeingtheseburdensfrom thenodemachines.

Theresultsfrom thepreliminaryperformancemeasurementsindicatethat with sufficient
delaybetweenI/O requeststo a shareddevice,deviceparallelismis exploitedwithin the
system. This delay may take the form of machinesperforming file system requests
betweenlengthycomputationor low activity. Striping the file systemacrossmultiple
devicesmayhaveaneffect similar to increasingthedelaybetweenrequests.

We believethat by using 100MB/sec Fibre Channeland multiple storagedevices,this
sharedstorageschemewill scalewell to severalmachinesevenwith large workloads.
Furthermore,the fine grain mutualexclusion implementedusingthe device locks will
decreaseconflicts to furtherincreasetheperformanceof each node and the system.

Acknowledgments

We thank Ben Gribstad at the University of Minnesota for his help with device driver

development and performance evaluations. He contributed a lot to the preliminary results

portion of this paper. We also thank Aaron Sawdey from the University of Minnesota for
his advice and experience while building the parallel SCSI test configuration used during

development and preliminary tests.

34O

The SCSI Device Locks representinput from a numberof individuals. Much of the
designand definition is a result of dialogueswith Ciprico and Seagate. We thank
RaymondGilson,StevenHansen,andEdwardSoltisof Ciprico,andJimCoomes,Gerald
Houlder,andMichaelMiller of Seagate.Finally, we thankCarl Rigg andBradEackerat
Silicon Graphics for granting accessto their device driver code which aided in the
developmentof GFS.

References

[1] P. Valduriez, "Parallel Database Systems: the case for shared--something,"
Proceedings of the Ninth International Conference on Data Engineering, pp. 460-

465, 1993.

[2] G. F. Pfister, In Search of Clusters. Upper Saddle River, NJ 07458: Prentice-Hall,
Inc., 1995.

[31 R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, "Design and

Implementation of the Sun Network File System", Proceedings of the Summer

USENIX Conference, pp. 119-130, 1985.

[4] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch, "The Sprite

Network Operating System", IEEE Computer, pp. 23-25, February 1988.

[5] M. Satyanarayanan, "Scalable, Secure, and Highly Available Distributed File

Access", 1EEE Computer, pp. 9-20, May 1990.

[61 M. Satyanarayanan, "Coda: A Highly Available File System for a Distributed

Workstation Environment", Proceedings of the Second IEEE Workshop on

Workstation Operating Systems, September, 1989.

[7] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang, "Serverless
Network File System", ACM Operating System Review, vol. 29, no. 5, December
1995.

[8] J. Hartman and H. Ousterhout, "Zebra: A striped network file system," USENIX

Workshop on File Systems, May 1992.

[91 M. Dahlin, C. Mather, R. Wang, T. Anderson, and D. Patterson, "A Quantitative
Analysis of Cache Policies for Scalable Network File Systems", Proceedings of the

1994 SIGMETRICS Conference, May 1994.

[10] Digital Technical Journal, VAXcluster Systems, September 1987. Special Issue -
Number 5.

[I 1] K. Matthews, "Implementing a Shared File System on a HIPPI Disk Array",

Fourteenth IEEE Symposium on Mass Storage Systems, pp. 77-88, 1995.

341

[12] R. Katz, G. Gibson, and D. Patterson, "Disk System Architectures for High

Performance Computing", Proceedings of the IEEE, vol. 77, pp. 1842-1858, 1989.

[13] C. Jurgens, "Fibre Channel: A connection to the future", IEEE Computer, pp. 82-90,

August 1995.

[14] ANSI, FC-AL Direct Attach Disk Profile (Private Loop), June 1995. Version !.8.

[15] Silicon Graphics Inc., Mountain View, CA 94029, Programming on Silicon

Graphics Systems: An Overview, 1996. Document Number 007-2476-002.

[16] Silicon Graphics Inc., Mountain View, CA 94029, IRIX Device Driver
Programming Guide, 1996. Document Number 007-0911-060.

[17] U. Vahalia, Unix Internals: The New Frontiers. Upper Saddle River, NJ
07458: Prentice-Hall, Inc., 1996.

[18] M. Bach, The Design of the Unix Operating System, Englewood Cliffs, NJ
07632: Prentice-Hall, Inc., 1986.

[19] B. Goodheart and J. Cox, The Magic Garden Explained, Englewood
Cliffs,NJ 07632: Prentice-Hall, Inc., 1994.

[20] P. Woodward, "Interactive Scientific Visualization of Fluid Flow", IEEE

Computer, pp. 13-25, October 1993.

[21] A. L. Reddy and J. C. Wyllie, "I/O Issues in a Multimedia System",
IEEE Computer, pp. 69-74, March 1994.

[22] Silicon Graphics Inc., Mountain View, CA 94029, IRIX Admin: Disks and
Filesystems, 1996. Document Number 007-2825-001.

342

